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Abstract

A penalty finite element analysis with bi-quadratic elements is performed to investigate the influence of uniform and non-uniform
heating of bottom wall on natural convection flows in a trapezoidal cavity. In the present investigation, bottom wall is uniformly
and non-uniformly heated while two vertical walls are maintained at constant cold temperature and the top wall is well insulated. Para-
metric study for the wide range of Rayleigh number (Ra), 103

6 Ra 6 105 and Prandtl number (Pr), 0:07 6 Pr 6 100 shows consistent
performance of the present numerical approach to obtain the solutions in terms of stream functions and the temperature profiles. For
certain values of the parameters studied in the above range, a symmetry is observed while representing the flow patterns in terms of
stream functions. Non-uniform heating of the bottom wall produces greater heat transfer rate at the center of the bottom wall than uni-
form heating case for all Rayleigh numbers but average Nusselt number shows overall lower heat transfer rate for non-uniform heating
case. The power law correlations between average Nusselt number and Rayleigh numbers are presented. The effect of Prandtl number in
the variation of local and average Nusselt numbers is more significant for Prandtl numbers in the range 0.07–0.7 than 10–100.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, an ever-increasing awareness in ther-
mally driven flows reflects that fluid motions and transport
processes generated or altered by buoyancy force are of
interest due to the practical significances in many fields of
science and technology. As a result, this subject is currently
studied in diverse areas of meteorology, geophysics, energy
storage, fire control, studies of air movement in attics and
greenhouses, solar distillers, growth of crystals in liquids,
etc. It may also be noted that the sinusoidal wall tempera-
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ture variation produces uniform melting of materials such
as glass as recently reported by Sarris et al. [1] in their
detailed study on the effect of sinusoidal top wall tempera-
ture variations in a natural convection within a square
enclosure where the other walls are insulated. The essential
coupling of transport properties of flow and thermal fields
leads to an added complexity in buoyancy driven flows.
Bejan [2] explains that internal natural convection flow
problems are more complex than external ones. Further,
Gebhart [3] and Hoogendoorn [4] emphasized various
aspects of natural convection flows in a square cavity.
External buoyancy driven flow problems are considerably
simpler than the internal buoyancy driven flow problems.
The physical reason is that at large Rayleigh number clas-
sical boundary layer theory yields the same simplifications
for external problems, namely, the region exterior to the
boundary layer is unaffected by the boundary layer. For
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Nomenclature

g acceleration due to gravity, m s�2

k thermal conductivity, W m�1 K�1

H height of the trapezoidal cavity
L length of the trapezoidal cavity, m
Nu local Nusselt number
p pressure
P dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
T temperature, K
Th temperature of hot bottom wall, K
Tc temperature of cold vertical wall, K
u x component of velocity
U x component of dimensionless velocity
v y component of velocity
V y component of dimensionless velocity
X dimensionless distance along x coordinate
Y dimensionless distance along y coordinate

Greek symbols

a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

c penalty parameter
h dimensionless temperature
m kinematic viscosity, m2 s�1

u angle of inclination of the left wall
q density, kg m�3

U basis functions
w stream function
n horizontal coordinate in a trapezoidal
g vertical coordinate in a trapezoidal

Subscripts

b bottom wall
s side wall
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confined natural convection, in contrast, boundary layers
form near the walls but the region exterior to them is
enclosed by the boundary layers and forms a core region.
Since the core is partially or fully encircled by the boundary
layers, the core flow is not readily determined from the
boundary conditions but depend on the boundary layer,
which in turn, is influenced by the core. The interactions
between the boundary layer and core constitutes a major
complexity in the problem and is inherent to all confined
convection configurations, namely, that the flow pattern
cannot be predicted apriori from the given boundary con-
ditions and geometry. In fact, the situation is even more
intricate because it often appears that more than one global
core flow is possible and flow subregions, such as cells and
layers, may be embedded in the core. This physical com-
plexity in confined convection is not only a topic for anal-
ysis but has equal significance for numerical and
experimental investigations. The extensive research studies
using various numerical simulations reported by Patterson
and Imberger [5], Nicolette et al. [6], Hall et al. [7], Hyun
and Lee [8], Fusegi et al. [9], Lage and Bejan [10,11] and
Xia and Murthy [12] ensure that several attempts have been
made to acquire a basic understanding of natural convec-
tion flows and heat transfer characteristics in an enclosure.

The majority of works dealing with convection in enclo-
sures is restricted to the cases of simple geometry like rect-
angular, square, cylindrical and spherical cavities. But the
configurations of actual containers occurring in practice
is often far from being simple. Iyican and Bayazitoglu
[13] investigated natural convective flow and heat transfer
within a trapezoidal enclosure with parallel cylindrical
top and bottom walls at different temperatures and plane
adiabatic side walls. The flow features in trapezoidal enclo-
sures are predicted using data collected for rectangular
enclosures. A critical Rayleigh number is presented
depending on the tilting angle, where unicellular convec-
tion is observed. Karyakin [14] reported two-dimensional
laminar natural convection in enclosures of arbitrary
cross-section. This study reported on transient natural con-
vection in an isosceles trapezium cavity inclined at angle /
to the vertical where a single circulation region is found in
the steady state case. The heat transfer rate is found to
increase with the increase in the angle /. Perić [15] studied
natural convection in a trapezoidal cavities with a series of
systematically refined grids from 10 � 10 to 160 � 160 con-
trol volume and observed the convergence of results for
grid independent solutions. Kuyper and Hoogendoorn
[16] investigated laminar natural convection flow in trape-
zoidal enclosures to study the influence of the inclination
angle on the flow and also the dependence of the average
Nusselt number on the Rayleigh number. Thermosolutal
heat transfer within trapezoidal cavity heated at the bottom
and cooled at the inclined top part was investigated by
Boussaid et al. [17]. The convective heat transport equation
was solved by alternating direction implicit (ADI) method
combined with a fourth-order compact Hermitian method.
It is seen from the literature that no attempt has been made
for the detailed calculations of local and average Nusselt
numbers on a natural convection flow within a trapezoidal
enclosure for various thermal boundary conditions. There-
fore as a step towards the eventual developments on natu-
ral convection flows within closed enclosures, it is
interesting to pursue for a complete understanding of heat
transfer rates for many engineering applications such as
cooling of computer systems and other electronic
equipments.
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The present study deals with a natural convection flow
within a trapezoidal enclosure where the bottom wall is
heated (uniformly and non-uniformly) and vertical walls
are cooled by means of a constant temperature bath
whereas the top wall is well insulated. The consistent pen-
alty finite element method [18] has been used to solve the
nonlinear coupled partial differential equations for flow
and temperature fields with both uniform and non-uniform
temperature distributions prescribed at the bottom wall.
A B

g

x, uTh

or

Tc Tc

Tc+  (T  –hTc π) sin(   x/L)

ϕ

Fig. 1. Schematic diagram of the physical system.
2. Mathematical formulation

Consider a trapezoidal cavity of length L and height H
with the left wall inclined at an angle u ¼ 30� with the
y-axis. The velocity boundary conditions are assumed to
be no-slip on solid boundaries. The fluid is assumed to be
incompressible, Newtonian and laminar. For the treatment
of the buoyancy term in the momentum equation, Bous-
sinesq approximation is adopted to account for the varia-
tions of temperature as a function of density, and to
couple in this way the temperature field to the flow field.
The governing equations for steady natural convection
flow using conservation of mass, momentum and energy
can be written as
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The boundary conditions are as follows:
At the bottom wall,

u¼ 0; v¼ 0; T ¼ T h or T ¼ ðT h� T cÞ sin
px
L

� �
þ T c;

at the left and right vertical walls,

u ¼ 0; v ¼ 0; T ¼ T c ð5Þ
and at the top wall

u ¼ 0; v ¼ 0;
oT
oy
¼ 0:

Using the following transformation of variables:

X ¼ x
H
; Y ¼ y

H
; U ¼ uH

a
; V ¼ vH

a
;

P ¼ pH 2
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; h ¼ T � T c

T h � T c

:

ð6Þ

The governing equations (1)–(4) reduce to non-dimensional
form:
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with the boundary conditions (see Fig. 1)

U ¼ 0; V ¼ 0; h ¼ 1 or h ¼ sinðpX Þ on AB;

U ¼ 0; V ¼ 0; h ¼ 0 on AD; BC;

U ¼ 0; V ¼ 0;
oh
oY
¼ 0 on CD:

ð11Þ
3. Solution procedure and post-processing

The momentum and energy balance equations (8)–(10)
are solved using the Galerkin finite element method. The
continuity equation (7) will be used as a constraint due
to mass conservation and this constraint may be used to
obtain the pressure distribution [18–20]. In order to solve
Eqs. (8) and (9), we use the penalty finite element method
where the pressure P is eliminated by a penalty parameter
c and the incompressibility criteria given by Eq. (7) (see
Reddy [18]) which results in

P ¼ �c
oU
oX
þ oV

oY

� �
: ð12Þ

The continuity equation (7) is automatically satisfied for
large values of c. Typical value of c that yield consistent
solutions is 107 [18–20].

Using Eq. (12), the momentum balance equations (8)
and (9) reduce to
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The system of Eqs. (10), (13) and (14) with boundary con-
ditions Eq. (11) is solved by using Galerkin finite element
method. Since the solution procedure is explained in earlier
works [19,20], the detailed description is not included in
this paper. The numerical solutions are obtained in terms
of the velocity components (U,V) and stream function
(w) is evaluated using the relationship between the stream
function (w) and the velocity components [21], where the
stream function (w) is defined in the usual way as U ¼ ow

oY
and V ¼ � ow

oX . It may be noted that the positive sign of w
denotes anti-clockwise circulation and the clockwise circu-
lation is represented by the negative sign of w. The no-slip
condition is valid at all boundaries as there is no cross flow,
hence w = 0 is used for the boundaries. The heat transfer
coefficient in terms of the local Nusselt number (Nu) is de-
fined by

Nu ¼ � oh
on
; ð15Þ

where n denotes the normal direction on a plane.
The local Nusselt numbers at bottom wall (Nub), left

wall (Nul) and right wall (Nur) are defined as
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Note that, u ¼ 30� for the present work. The average Nus-
selt numbers at the bottom, left and right walls are
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0
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Z 1
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and
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0

Nur ds2; ð21Þ

where ds1 and ds2 are small elemental length along the left
and right walls, respectively.
4. Results and discussion

4.1. Numerical tests

The computational domain consists of 20 � 20 bi-qua-
dratic elements which correspond to 41 � 41 grid points
in n–g domain and an overview of grid generation is dis-
cussed in Appendix-A. The bi-quadratic elements with les-
ser number of nodes smoothly capture the non-linear
variations of the field variables which are in contrast with
finite difference/finite volume solutions available in the lit-
erature [15,16]. Numerical solutions are obtained for vari-
ous values of Ra = 103–105 and Pr = 0.07–100 with
uniform and non-uniform heating of the bottom wall
where the two vertical walls are cooled and the top wall
is well insulated. The jump discontinuities in Dirichlet type
of wall boundary conditions at the corner points (see
Fig. 1) correspond to computational singularity. To ensure
the convergence of the numerical solution to the exact solu-
tion, the grid sizes have been optimized and the results pre-
sented here are independent of grid sizes. In particular, the
singularity at the corner nodes of the bottom wall needs
special attention. The grid size dependent effect of the tem-
perature discontinuity at the corner points upon the local
(and the overall) Nusselt numbers tend to increase as the
mesh spacing at the corner is reduced. One of the ways
for handling the problem is assuming the average tempera-
ture of the two walls at the corner and keeping the adjacent
grid-nodes at the respective wall temperatures. Alterna-
tively, based on earlier work by Ganzarolli and Milanez
[22], this procedure is still grid dependent unless a suffi-
ciently refined mesh is implemented. Accordingly, once
any corner formed by the intersection of two differently
heated boundary walls is assumed at the average tempera-
ture of the adjacent walls, the optimal grid size obtained for
each configuration corresponds to the mesh spacing over
which further grid refinements lead to grid invariant results
in both heat transfer rates and flow fields. Similar observa-
tions are also reported in an earlier work by Corcione [23].

The stream functions and temperature contours have
been compared with finite volume based solutions [16]
and the solutions are in well agreement. It may be noted
that current solution is based on 20 � 20 bi-quadratic ele-
ment whereas the earlier work [16] is based on 60 � 60 con-
trol volume grid. In the current investigation, Gaussian
quadrature based finite element method provides the
smooth solutions at the interior domain including the cor-
ner regions as evaluation of residual depends on interior
Gauss points and thus the effect of corner nodes are less
pronounced in the final solution. In general, the Nusselt
numbers for finite difference/finite volume based methods
are calculated at any surface using some interpolation func-
tions [15,16] which are now avoided in the current work.
The present finite element approach offers special advan-
tage on evaluation of local Nusselt number at the bottom
and side walls as the element basis functions are used to
evaluate the heat flux.
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Flow and temperature fields are shown in terms of
streamlines and isotherms, respectively. Owing to the sym-
metrical boundary conditions on the vertical walls, the flow
and temperature fields are symmetrical about the mid-length
of the enclosure. The symmetrical boundary conditions in
the vertical direction result in a pair of counter-rotating cells
in the left and right halves of the enclosure for all the para-
metric values considered. Therefore, the flows in the left and
right halves of the enclosure are identical except for the sense
of rotation. Each cell ascends along the symmetry axis, then
faces the upper adiabatic wall through which it moves hori-
zontally towards the corresponding cold wall and finally it
descends along the corresponding cold wall under the effect
of cooling.

4.2. Effects of Rayleigh number: uniform heating

at bottom wall

Figs. 2–5 illustrate the stream function and isotherm
contours of the numerical results for various Ra =
103–105 and Pr = 0.07–10 when the bottom wall is uni-
formly heated and the side walls are cooled while the top
wall is well insulated. As expected due to the cold vertical
walls, fluids rise up from middle portion of the bottom wall
and flow down along the two vertical walls forming two
symmetric rolls with clockwise and anti-clockwise rotations
Fig. 2. Temperature and stream function contours for uniform bottom hea
clockwise flows are shown via negative and positive signs of stream functions

Fig. 3. Temperature and stream function contours for uniform bottom heatin
flows are shown via negative and positive signs of stream functions, respective

Fig. 4. Temperature and stream function contours for uniform bottom heatin
flows are shown via negative and positive signs of stream functions, respective
inside the cavity. At Ra ¼ 103, the magnitudes of stream
function are considerably lower and the heat transfer is
purely due to conduction (figure not shown). During con-
duction dominant heat transfer, the temperature contours
with h = 0.05–0.3 occur symmetrically near the side walls
of the enclosure. The other temperature contours with
h P 0:4 are smooth curves symmetric with respect to the
vertical symmetric line. The conduction dominant heat
transfer will be illustrated later via average Nusselt number
vs Rayleigh number plot and the critical Rayleigh number
would indicate the initiation of the significant effect of con-
vective heat transfer.

During conduction dominant heat transfer, the temper-
ature profiles are almost invariant w.r.t. Ra, and it is
observed that the significant convection is initiated at
Ra ¼ 5� 103 with Pr ¼ 0:07. At Ra ¼ 5� 103 (Fig. 2), the
distortion of the isotherms increases gradually and the
advection takes the command, becoming the dominant
mode of heat transfer. The circulations are greater near
the center and least at the wall due to no-slip boundary
conditions. Due to initiation of convection, the isotherms
are significantly distorted and pushed near the vertical
walls and it is observed that isotherm with h ¼ 0:4 breaks
into two symmetric contour lines. At the small Rayleigh
number (Ra ¼ 5� 103) except near the wall, the stream
functions are almost circular. As Rayleigh number
ting, h(X,0) = 1, with Pr ¼ 0:07 and Ra ¼ 5� 103. Clockwise and anti-
, respectively.

g, h(X,0) = 1, with Pr ¼ 0:07 and Ra ¼ 105. Clockwise and anti-clockwise
ly.

g, h(X,0) = 1, with Pr ¼ 0:7 and Ra ¼ 105. Clockwise and anti-clockwise
ly.



Fig. 5. Temperature and stream function contours for uniform bottom heating, h(X,0) = 1, with Pr ¼ 10 and Ra ¼ 105. Clockwise and anti-clockwise
flows are shown via negative and positive signs of stream functions, respectively.
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increases to Ra ¼ 105, the buoyancy driven circulation
inside the cavity also increases as seen from greater magni-
tudes of the stream functions (Fig. 3). It is interesting to
observe that the stream function contours near the walls
tend to have neck formation due to stronger circulation
at higher Ra which contrasts the circulation patterns at
smaller Ra as seen in Fig. 2. Due to stronger circulation,
the isotherms are compressed near the middle portion of
the vertical walls. Consequently, at Ra ¼ 105, the tempera-
ture gradients near both the bottom and side walls tend to
be significant to develop the thermal boundary layer. Due
to greater circulation near the central core at the top half
of the enclosure, there are small gradients in temperature
at the central regime whereas a large stratification zone
of temperature is observed at the vertical symmetry line
due to stagnation of flow. The thermal boundary layer
develops partially within the cavity for Ra ¼ 103 whereas
for Ra ¼ 105, the isotherms presented in Fig. 3 indicate that
the thermal boundary layer develops almost throughout
the entire cavity.

Comparative studies in Figs. 3–5 show that as Pr

increases from 0.07 to 10, the values of stream function
and isotherms in the core cavity increase. For Pr ¼ 0:07
the streamlines look almost circular at the central regime,
circular streamline pattern gradually gets deformed for
Pr ¼ 0:7 and finally for Pr ¼ 10, the streamlines near the
Fig. 6. Temperature and stream function contours for non-uniform bottom he
clockwise flows are shown via negative and positive signs of stream functions

Fig. 7. Temperature and stream function contours for non-uniform bottom he
clockwise flows are shown via negative and positive signs of stream functions
walls and the core tend to take the shape of the cavity sig-
nifying the increasing intensity of circulations. In addition,
at higher Ra, the temperature contours (h 6 0:4) are com-
pressed towards the vertical side and the compression of
isotherm contours still continues and the compression is
more for Pr ¼ 0:7 and 10. Note that, the temperature varies
with h = 0.4–0.5 for Pr ¼ 0:7 (Fig. 4) near the central core
regime at the top half of the enclosure whereas the temper-
ature varies within h = 0.5–0.6 for Pr ¼ 10 as seen in Fig. 5.
Due to greater circulation at Pr ¼ 10, the zone of stratifica-
tion of temperature at the central symmetric line is reduced.

4.3. Effects of Rayleigh number: non-uniform heating

at bottom wall

Stream function and isotherm contours are displayed in
Figs. 6–8 for Ra ¼ 105 and Pr = 0.07–10 when the bottom
wall is non-uniformly heated and the side walls are cooled
while the top wall is well insulated. As seen in Figs. 2–5,
uniform heating of the bottom wall causes a finite discon-
tinuity in Dirichlet type of boundary conditions for the
temperature distribution at the edges of the bottom wall.
In contrast, the non-uniform heating removes the singular-
ities at the edges of the bottom wall and provides a smooth
temperature distribution in the entire cavity. Due to the
non-uniform heating of the bottom wall for Ra ¼ 103 and
ating, h(X,0) = sin(pX), with Pr ¼ 0:07 and Ra ¼ 105. Clockwise and anti-
, respectively.

ating, h(X,0) = sin(pX), with Pr ¼ 0:7 and Ra ¼ 105. Clockwise and anti-
, respectively.



Fig. 8. Temperature and stream function contours for non-uniform bottom heating, h(X,0) = sin(pX), with Pr ¼ 10 and Ra ¼ 105. Clockwise and anti-
clockwise flows are shown via negative and positive signs of stream functions, respectively.
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Pr ¼ 0:07, the development of thermal boundary layer is
less as compared to the uniform heating case within the
cavity (figure not shown). For Pr ¼ 0:07 the conduction
dominant heat transfer mode is observed up to
Ra ¼ 3� 103 (figure not shown) which is in contrast with
the uniform heating case where the critical Rayleigh num-
ber is around 5� 103. Note that, the temperature at the
bottom wall is non-uniform and maxima in temperature
occurs at the center. Therefore, the greater heat transfer
rate will occur at the center and the detailed analysis will
be illustrated in the next section.

The circulation pattern is qualitatively similar to the uni-
form heating case with the identical situation (Fig. 6). Due
to non-uniform bottom heating, the heating rate near the
wall is generally lower which induces less buoyancy effect
resulting in less thermal gradient throughout the domain.
The uniformity in temperature distribution and least tem-
perature gradients are still observed at the central core
regime within the top half of the domain. The less buoy-
ancy effect also leads to a large zone of stratification of
temperature at the vertical line of symmetry (Fig. 6). The
effect of Prandtl number is also pronounced for Ra ¼ 105

as seen in Figs. 6–8 where the greater circulation causes
more heat to be distributed in the central regime. Similar
to the uniform heating case, the streamline contours near
the walls tend to take the shape of the cavity at Pr ¼ 0:7
and 10 (Figs. 7 and 8). However, compared to uniform
heating cases, the values of temperature contours are less
near the central and top portion of the enclosure for
non-uniform heating case. The greater values of tempera-
ture contours are highly densed near the bottom wall which
may indicate a lower heating rates at the top as well as cen-
tral regime of the enclosure.
4.4. Heat transfer rates: local and average Nusselt numbers

Fig. 9 displays the effects of Ra and Pr on the local Nus-
selt numbers at the bottom and side walls (Nub,Nus). As a
result of symmetry in the temperature field, heat transfer is
symmetrical with respect to midlength (X ¼ 1=2). For uni-
form heating of the bottom wall, the heat transfer rate
decreases from the left of the bottom wall and attains its
minimum value at the center X ¼ 1=2 and then increases
towards the right edge of the bottom wall (Fig. 9a). On
the contrary, for non-uniformly heated bottom wall, Nub

increases from the left edge of the bottom wall, attains its
maximum value near the center at lower Ra. Local Nusselt
number increases with Ra due to stronger fluid circulation.
Further at Ra ¼ 105, non-uniform heating produces a sinu-
soidal type of local heat transfer rate symmetrical with
respect to mid-length X ¼ 1=2. The physical reason of this
type of behavior is due to the higher values of stream func-
tion (i.e., high flow rate) occur in the middles of the first
and second half of the cavity. As Pr increases from 0.07
to 10, the local Nusselt number at the bottom wall
increases as seen in Fig. 9a. The temperature contours
diverge from the corner points towards the central vertical
line for uniform heating cases and therefore local Nusselt
number is a monotonically decreasing function with the
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distance. In contrast, for non-uniform heating cases the
temperature contours are compressed around the interme-
diate zones between corner and the vertical line of symme-
try, and local Nusselt number is maximum at around
X = 0.3 and 0.7.

Fig. 9b illustrates the heat transfer rate at the side wall.
Due to the symmetry in the boundary condition, the local
Nusselt number is identical along both the side walls. The
local Nusselt number (Nus) is found to decrease with verti-
cal distance along the cold side wall for Ra ¼ 103 with
Pr ¼ 0:07 in both uniform and non-uniform heating cases.
It is interesting to note that, the heat transfer rate initially
decreases and later increases with distance for Ra ¼ 105

with Pr ¼ 0:7 and 10. This is due to the fact that, at higher
Ra, the isotherms are largely condensed near the middle
portion of the side wall due to stronger circulation and
the thermal gradient is less near the bottom corner point
due to less circulation. In addition, the temperature con-
tours are compressed towards the side walls away from
the corner points at the bottom. Therefore, the heat fluxes
are enhanced at the regimes away from bottom corner
points. The heat transfer rates are qualitatively similar,
but reduced for non-uniform bottom wall heating cases
as compared to the uniform heating case.
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Fig. 10. Variation of average Nusselt number with Rayleigh number for unifo
show the loglog plot of average Nusselt number vs. Rayleigh number for Pr ¼
The overall effects upon the heat transfer rates are dis-
played in Fig. 10a–d, where the distributions of the average
Nusselt number of bottom and side walls, are plotted vs the
logarithmic Rayleigh number. The average Nusselt num-
bers are obtained using Eqs. (19)–(21) where the integral
is evaluated using Simpson’s 1/3 rule. Note that, Fig. 10a
and b (Cases a and b) illustrates uniform heating case
and Fig. 10(c) and (d) (Cases c and d) illustrates non-uni-
form heating case. The values of the average Nusselt num-
bers along the side walls are less compared to the bottom
wall. This is due to the fact that the rate of heat transfer
to the fluid from the bottom wall is more compared to
the side wall. The average Nusselt numbers for both bot-
tom and side walls remain constant up to Ra ¼ 5� 103

for uniform heating cases whereas up to Ra ¼ 3� 103 for
non-uniform heating cases. The influence of the Rayleigh
number on the Nusselt number becomes significant at
higher Rayleigh number. The average Nusselt number at
the bottom and sidewalls were thermally balanced within
3% error. The values of average Nusselt number is more
in the case of uniform heating compared to non-uniform
heating as seen in Fig. 10a–d. The insets show the log–
log plot for average Nusselt number vs Rayleigh number
for convection dominant regimes. The log–log linear plot
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0:07 and 10.
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is obtained with more than 20 data set. The following cor-
relations are obtained for uniform and non-uniform heat-
ing of bottom and side walls.

Cases a and b: uniform heating (Ra P 5� 103)

Nub ¼ 2:308Nus;

¼ 1:682Ra0:11; Pr ¼ 0:07;

¼ 0:837Ra0:201; Pr ¼ 10:

Cases c and d: non-uniform heating (Ra P 3� 103)

Nub ¼ 2:308Nus;

¼ 0:392Ra0:188; Pr ¼ 0:07;

¼ 0:163Ra0:309; Pr ¼ 10:
5. Conclusion

In the current investigation the influence of uniform and
non-uniform heating of the bottom wall and heat transfer
characteristics due to natural convection within a trapezoi-
dal enclosures has been studied in detail. The penalty finite
element method helps to obtain smooth solutions in terms
of stream function and isotherm contours for uniform and
non-uniform heating of the bottom wall with wide ranges
of Pr and Ra. We observed that the conduction dominant
heat transfer modes for Ra 6 5� 103 during uniform heat-
ing of bottom wall whereas the conduction dominant heat
transfer is observed for Ra 6 3� 103 for non-uniform
heating.

At the onset of convection dominant mode, the temper-
ature contours get compressed towards the side walls and
they tend to get deformed towards the upward direction.
For Ra ¼ 103, the circulation inside the enclosure is so weak
that the viscous forces are dominant over the buoyancy
force. At Ra ¼ 105, the formation of thermal boundary lay-
ers takes place due to the increased circulation intensity. In
the case of uniform heating of the bottom wall the heat
transfer rate gradually decreases from the left of the bottom
wall and attains minimum at the center of the bottom wall
and increases to the right. In contrast, for the case of non-
uniform heating at Ra ¼ 103, the heat transfer increases
from the left of the bottom wall and attains maximum at
the center and then decreases whereas for Ra ¼ 105 a sinu-
soidal type of heat transfer rate is obtained. The non-uni-
form heating exhibits greater heat transfer rates at the
center of the bottom wall than with uniform heating case
for all Rayleigh number regimes. The local Nusselt number
at the side wall is found to be decreased with distance for
conduction dominant heat transfer whereas due to highly
dense contours near the top portion of the side wall, the
local Nusselt number is found to be increased for both uni-
form and non-uniform heating cases. The average Nusselt
number is found to follow power law variation with Ray-
leigh number for convection dominant regimes. Current
work establishes correlations for Pr ¼ 0:07 and 10. Liquid
metals (Pr ¼ 0:07) is used as a coolant in nuclear reactors
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for thermodynamic systems and water (Pr ¼ 10) is useful in
process industries. It may be noted that, current work is
based on the angle u ¼ 30�. Preliminary investigations have
been made with various angles and it has been observed that
intensity of circulation increases with increase in u. It is also
observed that multiple circulations gets suppressed as u
increases. Heat transfer coefficient or Nusselt number also
been found to vary with u. A detailed investigation on the
influence of u for circulations and heat transfer rates within
trapezoidal cavity is the subject of future research.

Appendix A

The name ‘‘isoparametric” derives from the fact that the
same parametric function describing the geometry may be
used for interpolating spatial variable within an element.
Fig. 11 shows a trapezoidal domain mapping to a square
domain. The transformation between (x,y) and (n,g) coor-
dinates can be defined by X ¼

P9
k¼1Ukðn; gÞxk and

Y ¼
P9

k¼1Ukðn; gÞyk where (xk,yk) are the X, Y coordinates
of the k nodal points as seen in Fig. 11a and b and Ukðn; gÞ
is the basis function. The nine basis functions are:

/1 ¼ ð1� 3nþ 2n2Þð1� 3gþ 2g2Þ;
/2 ¼ ð1� 3nþ 2n2Þð4g� 4g2Þ;
/3 ¼ ð1� 3nþ 2n2Þð�gþ 2g2Þ;
/4 ¼ ð4n� 4n2Þð1� 3gþ 2g2Þ;
/5 ¼ ð4n� 4n2Þð4g� 4g2Þ;
/6 ¼ ð4n� 4n2Þð�gþ 2g2Þ;
/7 ¼ ð�nþ 2n2Þð1� 3gþ 2g2Þ;
/8 ¼ ð�nþ 2n2Þð4g� 4g2Þ;
/9 ¼ ð�nþ 2n2Þð�gþ 2g2Þ:

The above basis functions are used for mapping the trape-
zoidal domain into square domain and the evaluation of
integrals of residuals as given in solution procedure section.
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